Consensus Mechanisms
The swarm employs multiple consensus strategies:
Weighted Voting
// Weighted voting consensus
function weightedVotingConsensus(signals, weights) {
const tally = {};
// Initialize tally for each asset and direction
signals.forEach(signal => {
const key = `${signal.asset}-${signal.direction}`;
if (!tally[key]) {
tally[key] = {
asset: signal.asset,
direction: signal.direction,
weightedConfidence: 0,
votes: 0,
signals: []
};
}
});
// Add weighted votes
signals.forEach(signal => {
const key = `${signal.asset}-${signal.direction}`;
const agentWeight = weights[signal.agentId] || 1;
tally[key].weightedConfidence += signal.confidence * agentWeight;
tally[key].votes += 1;
tally[key].signals.push(signal);
});
// Calculate final confidence scores and sort by strength
const results = Object.values(tally).map(result => {
return {
...result,
consensusConfidence: result.weightedConfidence /
result.signals.reduce((sum, signal) => sum + weights[signal.agentId], 0)
};
});
// Sort by consensus confidence
return results.sort((a, b) => b.consensusConfidence - a.consensusConfidence);
}
// Example usage
const consensusResults = weightedVotingConsensus(allAgentSignals, agentWeights);
console.log('Consensus results:', consensusResults);
Bayesian Aggregation
// Bayesian signal aggregation
function bayesianAggregation(signals) {
const aggregatedResults = {};
// Group signals by asset
signals.forEach(signal => {
if (!aggregatedResults[signal.asset]) {
aggregatedResults[signal.asset] = {
asset: signal.asset,
priorUp: 0.5, // Initial prior probability (neutral)
priorDown: 0.5,
posteriorUp: 0.5,
posteriorDown: 0.5,
signals: []
};
}
aggregatedResults[signal.asset].signals.push(signal);
});
// Apply Bayesian update for each asset
Object.values(aggregatedResults).forEach(result => {
result.signals.forEach(signal => {
// Adjust signal confidence based on historical accuracy
const adjustedConfidence = signal.confidence * signal.agentAccuracy;
if (signal.direction === 'up') {
// Update posterior probability for upward movement
result.posteriorUp = updateBayesianProbability(
result.posteriorUp,
adjustedConfidence
);
result.posteriorDown = 1 - result.posteriorUp;
} else {
// Update posterior probability for downward movement
result.posteriorDown = updateBayesianProbability(
result.posteriorDown,
adjustedConfidence
);
result.posteriorUp = 1 - result.posteriorDown;
}
});
// Determine consensus direction and confidence
if (result.posteriorUp > result.posteriorDown) {
result.consensusDirection = 'up';
result.consensusConfidence = result.posteriorUp;
} else {
result.consensusDirection = 'down';
result.consensusConfidence = result.posteriorDown;
}
});
return Object.values(aggregatedResults);
}
// Bayesian probability update
function updateBayesianProbability(prior, likelihood) {
// P(A|B) = (P(B|A) * P(A)) / P(B)
// Simplified Bayesian update for binary hypothesis
const posterior = (likelihood * prior) /
(likelihood * prior + (1 - likelihood) * (1 - prior));
return posterior;
}
Collective Decision Making
Signal Composition
// Compose signals from multiple agents
async function composeSwarmSignals(swarm, marketData) {
// Collect signals from all agents
const agentSignals = [];
for (const agent of swarm.getAgents()) {
const signals = await agent.process(marketData);
// Annotate signals with agent information
const annotatedSignals = signals.map(signal => ({
...signal,
agentId: agent.getId(),
agentType: agent.getType(),
agentAccuracy: agent.getHistoricalAccuracy()
}));
agentSignals.push(...annotatedSignals);
}
// Group signals by asset
const signalsByAsset = groupBy(agentSignals, 'asset');
// Apply consensus mechanism to each asset group
const consensusResults = {};
for (const [asset, signals] of Object.entries(signalsByAsset)) {
consensusResults[asset] = swarm.applyConsensus(signals);
}
return {
rawSignals: agentSignals,
consensusResults
};
}
// Example usage
const swarmAnalysis = await composeSwarmSignals(marketSwarm, currentMarketData);
console.log('Swarm consensus:', swarmAnalysis.consensusResults);
Decision Refinement
// Refine decisions through agent interaction
async function refineSwarmDecision(swarm, initialConsensus, refinementRounds = 3) {
let currentConsensus = initialConsensus;
let round;
// Perform multiple rounds of refinement
for (round = 0; round < refinementRounds; round++) {
console.log(`Refinement round ${round + 1}`);
// Each agent reviews the current consensus
const refinementOpinions = [];
for (const agent of swarm.getAgents()) {
const opinion = await agent.evaluateConsensus(currentConsensus);
refinementOpinions.push(opinion);
}
// Aggregate refinement opinions
currentConsensus = swarm.aggregateRefinements(
currentConsensus,
refinementOpinions
);
// Check for convergence
if (swarm.hasConverged(currentConsensus)) {
console.log(`Refinement converged after ${round + 1} rounds`);
break;
}
}
return {
finalConsensus: currentConsensus,
refinementRounds: Math.min(refinementRounds, round + 1),
hasConverged: swarm.hasConverged(currentConsensus)
};
}
// Example usage
const refinedDecision = await refineSwarmDecision(
marketSwarm,
swarmAnalysis.consensusResults
);
Last updated